Root Development and Abiotic Stress Adaptation
نویسندگان
چکیده
As soon as plants became independent from homogeneous aquatic environments, root-like organs were developed. The interface between land and water bodies was probably the medium for the earliest land plants. Taking into account that those ancestral root-like organs did not face problems of water and nutrient acquisition, they were probably rather simple. As the earliest plants colonized this medium, the sandy substrate was replaced by heterogeneous soil, promoting more sophisticated vegetation and expanding the limits of land plant colonization. Therefore, to increase the efficiency of exploration of heterogeneous soil, during plant evolu‐ tion the ancestral root-like organ was replaced by a complex root system (RS) as the one we now know [1-3]. Land plants nowadays present a wide diversity of root system architectures (RSA; spatial configuration of the root system) among species, from non-branched to highly com‐ plex branching patterns, achieving the most effective performance regarding anchorage and the acquisition of water and nutrients. Each kind of RSA is guided by a genetically controlled postembrionary root developmental program (PERDP). This program is not rigid, and actually permits high phenotypic plasticity in response to stressing environmental conditions. PERDP is essentially driven by two cellular processes, cell division in the apical root meristem and new lateral meristems formed from the pericycle, and cell expansion performed in the root elonga‐ tion area. This particular characteristic permits plants, which are sessile organisms, to change their root architecture to adapt to abiotic stress [4-6]. Soils provide plants with water and nutrients; however, nutrients and water are distributed in a heterogeneous or patchy manner. In order to enhance nutrient capture, plant roots have modified their root architecture to explore those nutrient-rich zones. In the last two decades, progress has been made understanding the physiological, molecular and biochemical basis of how the PERDP could be modified by abiotic environmental cues [5, 7]. The aim of this chapter is to provide a review of how abiotic stress modulates post-embryonic plant root development. We will begin with a discussion of origin, anatomy, morphology and kinds of RS. Then, we will review recent advances in the knowl‐
منابع مشابه
Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress
Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk c...
متن کاملActivation of the Jasmonate Biosynthesis Pathway in Roots in Drought Stress
Roots are the primary organs that first sense the soil environment. Plant growth and development are largely dependent on the plant root system, due to its crucial role in water and mineral uptake. Symbiotic microorganisms affect and improve the root response to stresses. Root endophytes and bacteria synthesize a wide array of plant-protecting chemicals, hormones, and compounds acting on hormon...
متن کاملAnalyzing the potato abiotic stress transcriptome using expressed sequence tags.
To further increase our understanding of responses in potato to abiotic stress and the potato transcriptome in general, we generated 20 756 expressed sequence tags (ESTs) from a cDNA library constructed by pooling mRNA from heat-, cold-, salt-, and drought-stressed potato leaves and roots. These ESTs were clustered and assembled into a collection of 5240 unique sequences with 3344 contigs and 1...
متن کاملAn ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato
RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flowe...
متن کاملRoots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance
To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping plat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013